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ABSTRACT

A general regression neural network (GRNN) and Monte Carlo simulation model for predicting survival and growth of

Salmonella on raw chicken skin as a function of serotype (Typhimurium, Kentucky, and Hadar), temperature (5 to 50uC), and

time (0 to 8 h) was developed. Poultry isolates of Salmonella with natural resistance to antibiotics were used to investigate and

model survival and growth from a low initial dose (,1 log) on raw chicken skin. Computer spreadsheet and spreadsheet add-in

programs were used to develop and simulate a GRNN model. Model performance was evaluated by determining the percentage

of residuals in an acceptable prediction zone from 21 log (fail-safe) to 0.5 log (fail-dangerous). The GRNN model had an

acceptable prediction rate of 92% for dependent data (n ~ 464) and 89% for independent data (n ~ 116), which exceeded the

performance criterion for model validation of 70% acceptable predictions. Relative contributions of independent variables were

16.8% for serotype, 48.3% for temperature, and 34.9% for time. Differences among serotypes were observed, with Kentucky

exhibiting less growth than Typhimurium and Hadar, which had similar growth levels. Temperature abuse scenarios were

simulated to demonstrate how the model can be integrated with risk assessment, and the most common output distribution

obtained was Pearson5. This study demonstrated that it is important to include serotype as an independent variable in predictive

models for Salmonella. Had a cocktail of serotypes Typhimurium, Kentucky, and Hadar been used for model development, the

GRNN model would have provided overly fail-safe predictions of Salmonella growth on raw chicken skin contaminated with

serotype Kentucky. Thus, by developing the GRNN model with individual strains and then modeling growth as a function of

serotype prevalence, more accurate predictions were obtained.

Salmonella is a leading cause of gastroenteritis and is

often isolated from poultry foods, such as eggs, chicken, and

turkey (1). There are more than 2,300 serotypes of

Salmonella, yet only about 50 are responsible for most

cases of gastroenteritis. One of the most important serotypes

is Typhimurium, which causes 20% of human infections but

50% of human deaths (6). The top three serotypes isolated

from chickens are Enteritidis, Kentucky, and Typhimurium,

and those most frequently isolated from turkeys are Hadar,

Senftenberg, and Heidelberg (6).
Parveen et al. (31) reported that the two most prevalent

serotypes isolated from chickens prechill and postchill in a

processing plant were Kentucky and Typhimurium and that

over 80% of these isolates were resistant to antibiotics.

Although antibiotic resistance is not desirable from a public

health point of view, it is beneficial from a predictive

microbiology perspective because it allows modeling of

Salmonella growth and survival on chicken products with

native flora (25–27).
Variation of growth among serotypes of Salmonella has

been reported (5, 16). On cooked chicken incubated at 25uC,

the growth rate of Typhimurium is faster than that of

Enteritidis but similar to those of nine other serotypes (17).
Also, on cooked chicken incubated at 10 to 48uC, the

optimal growth rate of Typhimurium is similar to that of

Dublin but higher than that of Enteritidis (19). Whether

growth of Kentucky differs from growth of other serotypes

of Salmonella has not been reported.

Performance of predictive models can be improved by

using better-fitting models. It has been reported that general

regression neural network (GRNN) models outperform

regression models and other types of neural network models

in predictive microbiology applications (13, 30). With the

advent of commercial software applications that perform

GRNN modeling, it is now easy to use GRNN modeling in

predictive microbiology studies. Moreover, GRNN model-

ing software is compatible with Monte Carlo simulation

software. Thus, it is possible to create GRNN models that

use Monte Carlo simulation to model uncertainty and

variability of independent variables. This has been accom-
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plished for regression models (18, 21, 22) but not for GRNN

models. Output distributions from such models can be used

in risk assessment (20).
The objective of the present study was to develop a

GRNN model that uses Monte Carlo simulation to provide

stochastic predictions of survival and growth of Salmonella
from a low initial dose on raw chicken skin with native flora

as a function of serotype (Typhimurium, Kentucky, and

Hadar), temperature (5 to 50uC), and time (0 to 8 h) for use

in risk assessment. The temperatures investigated were

selected to encompass the temperature range for growth of

Salmonella, whereas the incubation times investigated were

selected to encompass the times of temperature abuse

encountered during poultry processing and during meal

preparation.

MATERIALS AND METHODS

Salmonella serotypes. Isolates of serotypes Typhimurium,

Kentucky, and Hadar were obtained from a poultry company.

Typhimurium was resistant to chloramphenicol (C), ampicillin (A),

tetracycline (T), and streptomycin (S). Kentucky was resistant to

novobiocin (N), A, T, and S. Hadar was resistant to T,

sulfasoxazole (U), gentamicin (G), and S. Stock cultures were

maintained at 270uC in brain heart infusion broth (Difco, Becton

Dickinson, Sparks, MD) that contained 15% glycerol (Sigma, St.

Louis, MO). A multiple-antibiotic-resistant isolate of serotype

Enteritidis was not available for inclusion in this study.

Plating media. Xylose lysine Tergitol 4 base agar medium

without tergitol (XL) (Difco, Becton Dickinson) but supplemented

with 25 mM HEPES (H) and 25 mg of C, A, T, S, N, U, or G

(Sigma) per ml was used for plating.

Experimental design. A full 3 | 10 | 5 | 2 | 2 factorial

arrangement of serotype (Typhimurium, Kentucky, and Hadar),

temperature (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50uC), time (0,

2, 4, 6, and 8 h), trial (1 and 2), and sample (a and b) was used for

model development. Replicate trials were conducted in separate

weeks with different batches of raw chicken skin. Experimental

errors resulted in loss of data from 20 of 600 samples.

Sample preparation. Raw chicken thighs were purchased

weekly at retail stores. Skin was removed, placed on a cutting

board, held at 220uC for 15 min, and cut into circular portions

(2.14 cm2), which were placed on raw thigh meat in plastic jars

with screw-cap lids and stored at 4uC for 24 or 48 h before use.

Sample inoculation. Five microliters of stock culture was

added to 5 ml of BHI broth in a 25-ml Erlenmeyer flask that was

sealed with a foam plug and incubated at 30uC and shaking at

150 rpm for 23 h. Skin portions were inoculated with 5 ml of a

1027 dilution of the 23-h culture in buffered peptone water (Difco,

Becton Dickinson). The initial logarithmic number was 0.95 ¡

0.02 (mean ¡ standard error of the mean) for Typhimurium, 0.78

¡ 0.03 for Kentucky, and 0.91 ¡ 0.01 for Hadar.

Sample processing. Duplicate samples were processed per

sampling time by placing a skin portion in a 207-ml plastic bag

with filter screen (Whirl-Pak, Nasco, Fort Atkinson, WI) with 9 ml

of buffered peptone water. Samples were pulsified (Pulsifier model

PUL 100, Microbiology International, Frederick, MD) for 1 min,

and the pulsifate was used for enumeration.

MPN. A three-tube most-probable-number (MPN) assay in

buffered peptone water was used to enumerate Salmonella from 0

to 3.26 log per skin portion (25). Because the entire sample

including the skin portion was included in the MPN assay, the

lower limit of detection was one cell of Salmonella per skin portion

or 0 log. MPN tubes were incubated for 24 h at 38uC, and the

presence of Salmonella in MPN tubes was determined by drop

plating 5 ml from each MPN tube onto XLH-CATS for

Typhimurium, XLH-NATS for Kentucky, and XLH-TUGS for

Hadar. Positive tubes resulted in growth of typical black colonies

of Salmonella on drop plates after 24 h of incubation at 38uC.

Viable counts. Pulsifate was serially diluted in buffered

peptone water, and 50 ml of appropriate serial dilutions were spiral

plated (WASP, Microbiology International) onto XLH-CATS for

Typhimurium, XLH-NATS for Kentucky, and XLH-TUGS for

Hadar. Spiral plates were incubated for 24 h at 38uC before

automated counting of black colonies (ProtoCol, Microbiology

International). Viable counts were determined when Salmonella
cells were .3 log per skin portion.

Data processing. MPN were calculated by the method of

Thomas (39) and with CFU expressed as logarithmic numbers.

When Salmonella organisms were not detected in a sample, a value

of 20.01 log was assigned because this is the value used for

negative samples in ComBase (http://wyndmoor.arserrc.gov/com-

base/), which is the microbial modeling database in which data

from this study will be archived.

Model development. A data set was created in a computer

spreadsheet (Excel 2003, MicroSoft Corporation, Redmond, WA)

with separate columns for serotype (independent categorical

variable), temperature (independent numerical variable), time

(independent numerical variable), and logarithmic number (depen-

dent variable). A GRNN model was trained by the method of

Specht (35) using a spreadsheet add-in program (version 1.0,

Neural Tools, Palisade Corp., Newfield, NY). Eighty percent of the

data were used for training and 20% were used for testing.

Model equations. Equations used in the GRNN model were

as follows (15):

D(S, T, t) ~
Xp

j~1

xj { xij

sj

� �2

ð1Þ

ŷy(x) ~

Xn

i~1

yi exp({D(S, T, t))

Xn

i~1

exp({D(S, T, t))

~
N(x)

D(x)
ð2Þ

e ~ ŷy { yð Þ2 ð3Þ
where D(S, T, t) is the distance function for independent variables

(x) of serotype (S), temperature (T), and time (t), j is the index for

independent variables that ran from 1 to p, i is the index for

observed values that ran from 1 to n, s is the smoothing factor, ŷ is

the predicted value (logarithmic number), y is the observed value

(logarithmic number), and e is the squared error.

Model structure. The GRNN model had an input layer with

one node per independent variable, a pattern layer with one node

per observed value, a summation layer with numerator and

denominator nodes, and an output layer (Fig. 1). Each node in

the pattern layer computed its distance from the presented observed

value (equation 1) and then passed the values to the summation
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layer (equation 2). The summed values from the numerator node

were then divided by the summed values from the denominator

node to obtain the predicted value in the output layer. Training of

the GRNN involved optimizing smoothing factors to minimize the

mean squared error (equation 3).

Model performance. Observed values and predicted values

were used to calculate residuals (r):

ri ~ yi { ŷyi ð4Þ
where ri (log) is the ith residual, yi is the ith observed value (log),

and ŷi is the ith predicted value (log). The percentage of residuals

in an acceptable zone from 21 log (fail-safe) to 0.5 log (fail-

dangerous) was calculated and used as a measure of model

performance. Validation occurred when acceptable prediction rates

were $70% (23, 24).

Model simulation. A spreadsheet add-in program (version

5.0, @Risk, Palisade Corp.) was used to simulate the GRNN

model. A discrete distribution was used to model serotype

prevalence (equation 5), whereas pert distributions (equation 6)

were used to model uncertainty of temperatures and times of abuse:

~RiskDiscrete x1; . . . ; xið Þ, p1; . . . ; pið Þ½ � ð5Þ

~RiskPert minimum, most likely, maximumð Þ ð6Þ
where xi is the value of the ith serotype and pi is the probability of

occurrence of the ith serotype. The model output was the

logarithmic change (D):

FIGURE 1. General regression neural network for modeling the
survival and growth of Salmonella on raw chicken skin as a
function of serotype (S), temperature (T), and time (t).

TABLE 1. Input settings and output results for short-term temperature abuse scenarios for demonstrating how the general regression
neural network and Monte Carlo simulation model for survival and growth of Salmonella on raw chicken skin as a function of serotype,
temperature, and time can be integrated with risk assessmenta

Scenario

Input settings Output results

Serotype (%) Temp (uC) Time (h) Logarithmic change

T/K/H Min/ML/Max Min/ML/Max Correlation Min/50%/Max Distribution

A 31/58/11 5/20/50 0/2/8 0 20.21/0.09/4.8 Pearson5

B 31/58/11 5/20/50 0/2/8 21 20.16/0.04/0.5 Logistic

C 58/11/31 5/20/50 0/2/8 0 20.33/0.08/4.2 Pearson5

D 58/11/31 5/20/50 0/2/8 21 20.16/0.03/0.5 Pearson5

E 11/31/58 5/20/50 0/2/8 0 20.29/0.11/4.2 Pearson5

F 11/31/58 5/20/50 0/2/8 21 20.33/0.06/0.5 LogLogistic

a T, Typhimurium; K, Kentucky; H, Hadar; Min, minimum; ML, most likely; Max, maximum; 50%, median.

FIGURE 2. Residual plots for (A) dependent data for training
and (B) independent data for testing model performance. Residuals
were sorted by temperature and then time in ascending order.
Major ticks correspond to temperature and 8 h of incubation,
whereas minor ticks to the left of major ticks correspond to
incubation times of 0, 2, 4, and 6 h, respectively, for the
temperature indicated on the major tick. Lower and upper dashed
lines are boundaries of the acceptable prediction zone.
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D ~ ŷy tð Þi { ŷy 0ð Þi ð7Þ
where ŷ(t)i is the predicted logarithmic number at time t for the ith
iteration and ŷ(0)i is the predicted logarithmic number at zero hour

for the ith iteration.

Six temperature abuse scenarios with the input settings

indicated in Table 1 were simulated for demonstration purposes.

Simulation settings were one simulation, Latin Hypercube

sampling, Mersenne Twister generator, 103 iterations, a fixed

random number generator seed of 1, and a correlation between

temperature and time of 0 or 21. The best-fitting distributions for

output data (i.e., D) were determined using the chi-square statistic

within the BestFit function of @Risk.

RESULTS

The GRNN model was trained on 464 data points and

had an acceptable prediction rate of 91.8%. There were no

signs of systematic prediction bias as a function of serotype,

temperature, or time (Fig. 2A). The relative contribution of

independent variables was 16.8% for serotype, 48.3% for

temperature, and 34.9% for time.

When tested against independent data (n ~ 116;

Fig. 2B), the GRNN model had an acceptable prediction

rate of 88.8% and did not exhibit systematic prediction bias

as a function of independent variables. Thus, the model was

validated because its acceptable prediction rates for

dependent and independent data exceeded 70%.

Figure 3 shows selected examples of the GRNN model

predictions and observed data. Overall, Kentucky exhibited

less growth than Typhimurium and Hadar, which had

similar growth levels on raw chicken skin with native flora.

The GRNN model predicted logarithmic numbers of

Salmonella for temperatures and times that were and were

not investigated but that were within ranges of independent

variables used in model development. For example, growth

of Kentucky at 37uC for 5.3 h, a combination of temperature

and time that was not investigated, was 1.35 log (Fig. 4).

Output graphs of the GRNN model are shown in Figure 5

and further demonstrate that growth of Kentucky was less

than growth of Typhimurium or Hadar, which displayed

similar growth levels on raw chicken skin.

FIGURE 3. General regression neural network model predictions (lines) and observed data (symbols) for logarithmic number of
Salmonella serotypes Typhimurium, Kentucky, and Hadar on raw chicken skin incubated at 25, 35, or 45uC for 0 to 8 h.
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The temperature abuse scenarios shown in Table 1

were simulated to demonstrate how the GRNN model can

be integrated with risk assessment and how correlation of

independent variables can influence and perhaps improve

model predictions. In scenarios A, C, and E, temperature

and time were not correlated, whereas in scenarios B, D, and

F, temperature and time were negatively correlated to

simulate the assumption that longer times of temperature

abuse were more likely to occur at low temperatures than at

higher temperatures.

Use of a 21 correlation between temperature and time

produced a large decrease in the upper tail of the output

distributions with little or no effect on the lower tail or

median of the output distributions (Table 1 and Fig. 6). In

the absence of correlation, the maximum logarithmic

changes were 4.8, 4.2, and 4.2 for scenarios A, C, and E,

respectively, and output data fit best to a Pearson5

distribution. In the presence of correlation, the maximum

logarithmic change was 0.5 for scenarios B, D, and E, and

output data fit best to a Logistic, Pearson5, and LogLogistic

distributions, respectively. These data illustrate that corre-

lation of independent variables is a modeling technique that

can be used to improve model performance by avoiding

unlikely temperature abuse scenarios (e.g., 6.9 h at 40uC)

that might result in overly fail-safe predictions of Salmo-
nella growth.

Table 2 shows the combinations of independent

variables in scenarios A and B that resulted in the top five

largest increases in the logarithmic number of Salmonella
on raw chicken skin subjected to temperature abuse. These

results demonstrated that the upper tail of the output

distribution for scenario A resulted from extended temper-

ature abuse at near-optimal or optimal growth temperatures

for Salmonella; such scenarios are hopefully not likely to

occur in the real world. In addition, these results

demonstrated that a correlation of 21 might have been too

strong of a correlation between temperature and time of

abuse, as the top five iterations in scenario B were all for a

low temperature and indicate that some realistic scenarios,

such as 22uC for 4 h, were excluded and thus resulted in

overly fail-dangerous predictions of Salmonella growth

during temperature abuse.

The correlation value between 0 and 21 that reduces or

eliminates predictions that are overly fail-safe or overly fail-

dangerous was not determined and is likely to differ as a

function of the settings for the input distributions that define

the times and temperatures of abuse. Rather, the scenarios

simulated were designed to demonstrate the extremes of the

correlation effect and the importance of this aspect of the

model on output results for use in risk assessment.

DISCUSSION

Research in predictive microbiology most often in-

volves development of predictive models in pure broth

culture with a high initial dose of test pathogen. The

operating hypothesis is that models developed in pure broth

culture as a function of the major factors (i.e., temperature,

pH, and water activity) controlling pathogen growth provide

reliable predictions for food. Valid reasons for this approach

are technical ease, reduced cost, and potential model

robustness. Some historical examples of this approach are

the works of Gibson et al. (10), Buchanan and Phillips (2),
and Sutherland et al. (37).

Accurate and unbiased predictions of pathogen growth

are needed to safeguard public health. Models that under-

predict pathogen growth result in consumption of unsafe

food, whereas models that overpredict pathogen growth

result in destruction of safe food, which is not desirable. By

not considering microbial competition, models developed in

pure broth culture overpredict pathogen growth. For

example, maximum growth of Salmonella in pure broth

culture at 10uC is 9 log/ml (10), whereas maximum growth

of Salmonella on ground chicken breast meat with native

flora is 2 log/g (26), a difference of 7 log.

The availability of pathogen isolates with a phenotype

that can be detected in the presence of other microorganisms

is a hurdle for development of predictive models in food

with native flora. Transformation of pathogens by mutation

or molecular cloning to a phenotype (e.g., antibiotic

resistant, fluorescent, or luminescent) that can be detected

in food with native flora often results in fitness problems

that invalidate the use of the new strains for development of

predictive models (32). For example, Salmonella cells

transformed to express the green fluorescent protein from

a jellyfish are visible for detection and enumeration in

predictive microbiology studies but grow more slowly than

parent strains and thus are not good strains for model

development (19, 29). In contrast, Salmonella isolates with

natural resistance to antibiotics can be used to model growth

on chicken products with native flora by using plating media

with antibiotics that suppress and eliminate native flora

during enumeration (25–27). The latter approach was used

successfully in the present study to develop a predictive

model for survival and growth of three serotypes of

Salmonella on raw chicken skin with native flora.

Most studies in predictive microbiology use a mixture

of pathogen strains for model development. The idea is that

this will result in a fail-safe model because the fastest-

growing strain will predominate under the conditions tested.

However, models developed with a cocktail of strains could

be overly fail-safe. For example, if the present model had

been developed with a cocktail of Typhimurium, Kentucky,

and Hadar, the faster-growing serotypes Typhimurium and

Hadar would have predominated and the resulting model

would have overpredicted growth of Salmonella on raw

chicken skin contaminated with the slower-growing sero-

type Kentucky. For example, in Figure 5A, the GRNN

model would have overpredicted growth of Kentucky by ca.

3 log at 8 h of temperature abuse at 37uC. Thus, by deve-

loping models with individual strains and then modeling

growth as a function of serotype prevalence, more accurate

predictions are obtained.

From an epidemiological perspective, Salmonella
serotypes are classified as host adapted, host restricted

(HR), and unrestricted (40). Serotype Gallinarum is HR for

poultry, whereas Typhimurium is unrestricted. Auxotrophy

is characteristic of HR serotypes (40), and this characteristic
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could limit growth of HR serotypes on food with native

flora where certain nutrients might be in short supply. It is

interesting to speculate that Kentucky might be HR for

meat-type chickens, as this serotype is not a top 20 serotype

in humans, swine, or turkeys (6), and this could possibly

explain its poor growth on chicken skin in the present study.

Competitive exclusion of one serotype of Salmonella
by another serotype has been hypothesized to explain the

emergence of the Enteritidis epidemic in chicken eggs

following elimination of Gallinarum by depopulation of

infected layer-type chickens (14). If Kentucky proves to be

an HR serotype for meat-type chickens, it might be desirable

to not reduce or eliminate this serotype so that it could

competitively exclude other highly virulent serotypes (e.g.,

Typhimurium) in humans from colonizing chickens. The

lower growth of Kentucky on raw chicken skin in this study

indicates that it would pose much less risk than Typhimur-

ium and Hadar on chicken that has been subjected to short-

term temperature abuse. However, more information on the

pathogenic potential of Kentucky in humans and meat-type

chickens is needed before such a strategy is further

contemplated.

Models in predictive microbiology are usually devel-

oped in three stages using regression methods. First, kinetic

data for growth are fit to a primary model that predicts

changes in pathogen number as a function of time. Second,

growth parameters (e.g., lag time and growth rate) from

primary modeling are fit to secondary models that predict

them as a function of independent variables. Third, primary

and secondary models are combined to form a tertiary

model that predicts pathogen growth as a function of time

and independent variables. Limitations of this approach are

that it is time-consuming, requires significant training in

regression analysis, and uses regression models that are

inflexible (i.e., have a defined response surface of

prediction).

FIGURE 5. Output graphs from the general regression neural
network model for survival and growth of Salmonella on raw
chicken skin as a function of (A) time at 37uC and (B) temperature
at 5.3 h for the scenario in Figure 4.

FIGURE 4. Spreadsheet layout of the general regression neural network and Monte Carlo simulation model for predicting logarithmic
change (cell D10) of Salmonella on raw chicken skin as a function of serotype prevalence (cells C2:E2) and uncertainty of temperatures
(cells C4:E4) and times (cells C5:E5) of abuse. For the iteration shown, the outputs of the input distributions were serotype Kentucky (cells
B2, A8, A9), 37uC for the temperature of abuse (cells B4, B8, and B9), and 5.3 h for the time of abuse (cells B5 and C8), whereas the
outputs of the model were a logarithmic number of 1.97 after 5.3 h at 37uC (cell D8), an initial logarithmic number of 0.62 (cell D9), and a
logarithmic number change of 1.35 after 5.3 h at 37uC (cell D10). The correlation between time and temperature of abuse was 0 (cell G5)
for the scenario simulated.

J. Food Prot., Vol. 72, No. 10 NEURAL NETWORK MODEL FOR SURVIVAL AND GROWTH OF SALMONELLA 2083



Neural network modeling overcomes limitations of

regression modeling as it is fast, requires only a basic

understanding of the method, is flexible, and outperforms

regression modeling in predictive microbiology applications

(4, 7–9, 11–13, 30). These studies all used regression for

primary modeling and neural networks for secondary

modeling. In the present study, a general regression neural

network was used in one step for primary, secondary, and

tertiary modeling, and the resulting model had acceptable

and high performance (ca. 90% acceptable predictions).

Thus, it does not seem necessary to use regression modeling

in tandem with neural network modeling when neural

network modeling is capable of developing predictive

models in one step with considerable savings in time,

effort, and performance.

Risk assessment provides stochastic predictions of the risk

of adverse health outcomes from food produced by different

farm-to-table scenarios. Predictive models are used in risk

assessment to provide stochastic predictions for individual

pathogen events, such as initial contamination (22), growth

(18), thermal inactivation (20), and dose-response (21).
Consequently, the GRNN model developed in this study was

configured for risk assessment by using Monte Carlo

simulation in tandem with GRNN modeling software to

provide stochastic predictions of relative growth (i.e.,

logarithmic change) of Salmonella without specifying a

FIGURE 6. Output data and best-fit distributions from the general regression neural network and Monte Carlo simulation model for the
scenarios listed in Table 1.
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denominator (e.g., per square centimeter). By not having a

denominator, relative growth predictions can be seamlessly

integrated with risk assessments that express results in different

forms, such as per gram, per square centimeter, per serving, or

per carcass.

The rationale for no denominator was based on a

consideration of what is known about the ecology of

Salmonella on chicken. Surkiewicz et al. (36) reported that a

2.5-lb chicken carcass has a surface area of 1,900 cm2 and

that the distribution of the number of Salmonella among

chicken carcasses is not uniform but rather is as follows:

79% contain no Salmonella, 16% contain 1 to 30 cells, 1%

contain 30 to 300 cells, and 4% contain .300 cells. Thus,

expression of results per square centimeter would have been

based on a false assumption, i.e., uniform distribution of

Salmonella. Rather than make such a false assumption, it

was assumed that Salmonella was distributed in clusters and

that growth occurred in colonies.

The most widely used method for evaluating model

performance in predictive microbiology is the bias (Bf) and

accuracy (Af) factor method of Ross (33). This method

normalizes predicted values to homogenize variance and

was originally developed to evaluate the performance of

secondary models for generation time. An Af of 1.1 indicates

that on average there is a 10% difference between observed

and predicted values.

Tamplin et al. (38) used Bf and Af to evaluate

performance of secondary models for growth parameters.

The authors reported Af values of 1.14 for specific growth

rate (measured in log per hour), 1.33 for lag-phase duration

(measured in hours), and 1.02 for maximum population

density (MPD; measured in log per gram) for Escherichia
coli O157:H7 and ground beef incubated at 5 to 46uC.

These results indicate that on average observed and

predicted values differ by 14, 33, and 2% for specific

growth rate, lag-phase duration, and MPD, respectively.

A 10% difference in MPD or an Af of 1.1 is obtained

for a predicted value of 10 log and an observed value of 9

log. The residual for the latter prediction case is 1 log, which

corresponds to a 90% difference in pathogen numbers. By

using log-transformed values for MPD to calculate Af,

Tamplin et al. (38) overestimated model performance

because they did not consider that logarithmic transforma-

tion is also a method used to homogenize variance in

predictive microbiology.

When observed logarithmic values approach 0 log,

methods that normalize predicted values (38) or that

normalize residuals (33) result in large values that inflate

mean bias and accuracy factors (3). For example, an Af of 98

is obtained for a predicted value of 0.98 log and an observed

value of 0.01 log. To further illustrate this point, log MPN

and log CFU data from previous modeling studies for

Salmonella growth from a low initial dose (,1 log) on

chicken products with native flora (25, 27, 28) were used to

train and test GRNN models, and then performance of the

models was evaluated by graphing Af values for individual

prediction cases as a function of observed values (Fig. 7).

These results illustrate that Af values are large when

observed values are small and Af values are small when

observed values are high. Thus, for models that predict

logarithmic number, such as the GRNN model in this study

and the MPD model of Tamplin et al. (38), it is best not to

normalize predicted values or residuals when evaluating

model performance, as this results in an inaccurate

assessment of model performance.

Jeyamkondan et al. (13) compared statistical indices of

model performance and concluded that model performance

TABLE 2. Top five iterations for logarithmic change in scenarios
A and B in Table 1 for survival and growth of Salmonella on raw
chicken skin exposed to short-term temperature abuse

Scenario/

iteration

Logarithmic

change Serotype Temp (uC) Time (h)

A/457 4.81 Hadar 40.0 6.9

A/555 2.20 Typhimurium 35.0 5.2

A/991 2.13 Kentucky 37.7 6.4

A/496 2.11 Typhimurium 35.9 5.1

A/330 1.95 Typhimurium 32.6 5.3

B/516 0.49 Hadar 14.7 4.0

B/875 0.49 Hadar 14.5 4.0

B/462 0.49 Hadar 14.5 4.0

B/568 0.49 Hadar 14.8 3.9

B/505 0.49 Hadar 14.4 4.0

FIGURE 7. Accuracy factor (Af) plots for performance of general
regression neural network models developed using data for raw
ground chicken breast meat (25), chicken frankfurters (27), and
raw chicken skin (28). The performance evaluation with Af was
conducted with dependent data used to train the model and
independent data used to test the model.
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is better evaluated graphically and that an objective measure

of model performance is needed only when error plots are

similar. The acceptable prediction zone method used in this

study is a graphical method that uses a single quantitative

factor (i.e., acceptable prediction rate) to evaluate model

bias and accuracy in one step. A concept used in the

acceptable prediction zone method is that model predictions

can deviate from observed values more in the fail-safe than

fail-dangerous direction when a model is used to predict

food safety (34). A second concept used in the acceptable

prediction zone method is that models can exhibit prediction

bias as long as that prediction bias is at an acceptable level

in either the fail-safe or fail-dangerous direction.

The acceptable prediction zone method has been shown

to provide a more complete and accurate assessment of

model performance than Bf and Af (24). In the present study,

the GRNN model had an acceptable prediction rate of 92%

for dependent data and 89% for independent data. Since

these values exceeded 70%, which is the criterion for

acceptable model performance, the GRNN model was

classified as validated for predicting survival and growth

of Salmonella from a low initial dose on raw chicken skin as

a function of serotype, temperature, and time. Thus, the

model can be used with confidence in hazard analysis and

critical control point and risk assessment. However, because

parameters of the GRNN model are not provided by the

Neural Tools software application, deployment of the model

to stakeholders might be limited by the requirement that

users possess the Neural Tools and @Risk software used to

run and simulate the model and make predictions. The

robustness (i.e., ability to extrapolate) of the model for

predicting growth and survival of Salmonella from higher

initial doses and on other poultry meats and poultry meat

products is currently being investigated.

ACKNOWLEDGMENTS

The author appreciates the outstanding assistance of Jacquelyn

Ludwig (Agricultural Research Service) and Celia Whyte, Olabimpe Olojo,

and Catherine Katambo (University of Maryland, Eastern Shore).

REFERENCES

1. Bryan, F. L., and M. P. Doyle. 1995. Health risks and consequences

of Salmonella and Campylobacter jejuni in raw poultry. J. Food Prot.

58:326–344.

2. Buchanan, R. L., and J. G. Phillips. 1990. Response surface model for

predicting the effects of temperature, pH, sodium chloride content,

sodium nitrite concentration, and atmosphere on the growth of

Listeria monocytogenes. J. Food Prot. 53:370–376.

3. Delignette-Muller, M. L., L. Rosso, and J. P. Flandrois. 1995.

Accuracy of microbial growth predictions with square root and

polynomial models. Int. J. Food Microbiol. 27:139–146.

4. Esnoz, A., P. M. Periago, R. Conesa, and A. Palop. 2006. Application

of artificial neural networks to describe the combined effect of pH

and NaCl on the heat resistance of Bacillus stearothermophilus. Int. J.

Food Microbiol. 106:153–158.
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